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Abstract–The quasi-static capacitance and inductance of the

coplanar waveguide (CPW) are characterized independently us-

ing the boundary element method (BEM). The inductance calcu-

lation utilizes the magnetic scalar potential and avoids the usual

vector formulation. The proposed method can be easily ex-

tended to characterize three-dimensional problems such as CPW

discontinuities.

I. INTRODUCTION

I N microwave and millimeter wave integrated circuits,

coplanar waveguide (CPW) is widely used because it offers

convenient ground connection, small crosstalk, and small

radiation loss at discontinuities [1]. Several methods to obtain

the quasi-static characteristics of the CPW have been devel-

oped by using only the capacitance calculation [2], [3].

However, to characterize CPW discontinuities by equivalent

circuit parameters, it becomes necessary to calculate the

inductance as well as the capacitance associated with the

discontinuity [4] -[6].

In this letter, we present a boundary element formulation

for independently calculating the quasi-static capacitance and

inductance of a uniform CPW transmission line. The capaci-

tance problem is first formulated using a boundary integral

equation of the electric scalar potential. In an analogous

manner, the inductance problem is formulated by utilizing the

magnetic scalar potential. The proposed method has the

advantage that inductance can be calculated through a simple

scalar formulation, while other existing methods require the

calculation of the magnetic vector potential. This feature

should be most attractive when this method is extended to

attack three-dimensional CPW discontinuity problems.

II. CAPACITANCE OF THE COPLANAR WAVEGUIDE

Fig. 1 shows a symmetric coplanar waveguide to be ana-

lyzed in which the substrate is composed of the nonmagnetic

material. The thickness of the conductors is assumed zero

and the relative dielectric constant of the substrate is denoted

by ~,. For the calculation of per-unit-length capacitance, the

potential at the center strip is assumed to be 1 V and those at
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Fig. 1. Symmetric coplanar waveguide and its BEM regions.

the ground conductors, O V. In each region, the electric

scalar potential @ satisfies Laplace’s equation, and can be

expressed as a boundary integral equation from Green’s

identity. Moving the observation point r onto the boundary

r, one can write the boundary integral equation for the scalar

potential 4 in each region as [7]

aG(r, r’)
;W = ~{w!o~

}
- @(r’) an a=,

r,r’cl”, (1)

G(r, r’)= –~lnlr’–rl,

aG(r, r’) ii”(r’ -r)

an ‘–27rlr’-r 12”

Here, h is the outward unit normal vector. At

strate interface, the boundary conditions are
each air-sub-

[anltir=“r[+lsubstra‘2)[ @lair= [@l substratemd g

Applying the standard boundary element technique to the

integral equation (1) and matching the boundary conditions,

we can SOIVCfor the normal derivative of the potential on the

boundaries.

Since the charge density on the ground conductor should

be negligible far away from the edge of the ground conduc-

tor, the integration in (1) can be truncated at x = D, where
D > d. Fig. 2 shows the characteristic impedance changes

with respect to the normalized center conductor width (w/d)

for ~, = 9.8, S1 = s2, and h/d = 0.15. The linear basis

function and the collocation scheme are employed. The re-

sults of the boundary element method are compared with
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those of the method of the lines [8] and the errors are less

than 2.7 % when the number of the node is 184.

III. INDUCTANCE OF THE COPLANAR WAVEGUIDE

In the capacitance calculation of the coplanar waveguide,,

the charge density on the center strip is obtained from the

boundary integral equation of the scalar potential and its

normal derivative. In a similar manner, we will now treat the

inductance problem via a boundary integral formulation of

the magnetic scalar potential. The magnetic scalar potential +

is defined as

j(r) = -/’ H“ dl, (3)
ref.

where the zero potential reference can be chosen arbitrarily.

Since t satisfies Laplace’s equation, the following boundary

integral equation can be obtained from Green’s identity:

r,r’er. (4)

To determine the proper excitation condition for the induc-

tance calculation, we will assume that a current I flows in

the – z-direction along the center strip of the coplanar wave-

guide and a current 1/2 flows in the + z-direction on each of

the ground conductors. We also will assume that no magnetic

flux penetrates the conductor strips for the quasi-TEM mode

and that a IJ /a n vanishes on the strips. Since the magnetic

flux lines encircle the center strip (in a clockwise fashion),

the magnetic scalar potential defined in (3) is a multivalued

function. We shall introduce a branch cut in the left gap, and

assign a fixed potential of I/4 just above the gap, and a

potential of – 3 I/4 just below the gap, as shown in Fig. 3.

This ensures that the magnetic scalar potential jumps by I

every time the cut is crossed in the clockwise direction. Next,

it can be argued that the value of ~ in the right gap must be

– 1/4 from symmetry considerations. This is true for a

coplanar waveguide with a nonmagnetic substrate, since the

magnetic field is symmetrical about the y = O plane. In

addition, as the magnetic flux lines are perpendicular to the
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Fig. 3. Boundary conditions for the inductance calculation of the coplanar
waveguide.
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Fig. 4. Convergence of the inductance of the coplanar waveguide vs.

number of node, where S1 = S2 and w/d = 0.3.

gap, the magnetic scalar potential must be constant in the

gap.

Since the normal derivative of the Green’s function in-

cludes the scalar product ii “ (r’ – r) (see (l)), the second

term of the integral equation (4) vanishes completely along

the planar boundary. In addition, since d ~ /c3n vanishes on

the conductor, the boundary integral equation (4) reduces to

Note that the only unknown function in the above equation is

d~ /d n, or the normal component of the magnetic field, in

the gaps. Again the boundary element technique can be used

to numerically solve for d+/ d n. Contrary to the capacitance

calculation, it is only necessary to assign nodes in the gap

region. Once the normal magnetic field in the gap is known,

the magnetic flux density passing through the gaps is given

by

a+
B+= PO--, (6)

where PO is the permeability of the free space. Finally, the

inductance L is obtained from the ratio of the total magnetic
flux p penetrating the gap and the magnitude of the current

L=; [H]. (7)

Fig. 4 shows the convergence of the inductance calculation.

As a check of the present formulation, we compare this result

against that calculated indirectly from the capacitance of the
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line. The latter is given by the formula

Lc = -&[ H],
00

(8)

where Co is the capacitance of the coplanar waveguide with

e, = 1 and VO is the wave velocity in the free space. In Fig.

4, these two values agree very well. The difference is less

than 0.1 % for 154 nodes.

IV. CONCLUSION

A simple method for analyzing the capacitance and the

inductance of the CPW are proposed and calculated by the

boundary element method. The method uses the boundary

integral equation of the electric and magnetic scalar poten-

tials, and should be quite advantageous in the quasi-static

characterization of CPW discontinuities, Furthermore, the

present formulation can be easily extended to treat conduc-

tors with finite thickness.
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