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Boundary Element Characterization of
Coplanar Waveguides

Tack-Kyung Lee, Hao Ling, Member, IEEE, and Tatsuo Itoh, Fellow, IEEE

Abstract—The quasi-static capacitance and inductance of the
coplanar waveguide (CPW) are characterized independently us-
ing the boundary element method (BEM). The inductance calcu-
lation utilizes the magnetic scalar potential and avoids the usual
vector formulation. The proposed method can be easily ex-
tended to characterize three-dimensional problems such as CPW
discontinuities.

1. INTRODUCTION

N microwave and millimeter wave integrated circuits,

coplanar waveguide (CPW) is widely used because it offers
convenient ground connection, small crosstalk, and small
radiation loss at discontinuities [1]. Several methods to obtain
the quasi-static characteristics of the CPW have been devel-
oped by using only the capacitance calculation [2], [3].
However, to characterize CPW discontinuities by equivalent
circuit parameters, it becomes necessary to calculate the
inductance as well as the capacitance associated with the
discontinuity [4]-[6].

In this letter, we present a boundary element formulation
for independently calculating the quasi-static capacitance and
inductance of a uniform CPW transmission line. The capaci-
tance problem is first formulated using a boundary integral
equation of the electric scalar potential. In an analogous
manner, the inductance problem is formulated by utilizing the
magnetic scalar potential. The proposed method has the
advantage that inductance can be calculated through a simple
scalar formulation, while other existing methods require the
calculation of the magnetic vector potential. This feature
should be most attractive when this method is extended to
attack three-dimensional CPW discontinuity problems.

II. CapaciTANCE OF THE COPLANAR WAVEGUIDE

Fig. 1 shows a symmetric coplanar waveguide to be ana-
lyzed in which the substrate is composed of the nonmagnetic
material. The thickness of the conductors is assumed zero
and the relative dielectric constant of the substrate is denoted
by e,. For the calculation of per-unit-length capacitance, the
potential at the center strip is assumed to be 1 V and those at
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Fig. 1. Symmetric coplanar waveguide and its BEM regions.

the ground conductors, O V. In each region, the electric
scalar potential ¢ satisfies Laplace’s equation, and can be
expressed as a boundary integral equation from Green’s
identity. Moving the observation point » onto the boundary
T, one can write the boundary integral equation for the scalar
potential ¢ in each region as [7]
r,r
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Here, 7 is the outward unit normal vector. At each air-sub-
strate interface, the boundary conditions are

0o d¢
[ ¢] air [ ¢] substrate and [E‘lair = - er[ E]substrate. (2)

Applying the standard boundary element technique to the
integral equation (1) and matching the boundary conditions,
we can solve for the normal derivative of the potential on the
boundaries.

Since the charge density on the ground conductor should
be negligible far away from the edge of the ground conduc-
tor, the integration in (1) can be truncated at x = D, where
D > d. Fig. 2 shows the characteristic impedance changes
with respect to the normalized center conductor width (w/d)
for ¢, = 9.8, s1 =s2, and h/d = 0.15. The linear basis
function and the collocation scheme are employed. The re-
sults of the boundary element method are compared with
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Fig. 2. Characteristic impedance Z of the coplanar waveguide for s1 = s2
and h/d = 0.15.

those of the method of the lines [8] and the errors are less
than 2.7% when the number of the node is 184.

III. INDUCTANCE OF THE COPLANAR WAVEGUIDE

In the capacitance calculation of the coplanar waveguide,
the charge density on the center strip is obtained from the
boundary integral equation of the scalar potential and its
normal derivative. In a similar manner, we will now treat the
inductance problem via a boundary integral formulation of
the magnetic scalar potential. The magnetic scalar potential ¢

is defined as
r
- / H-dl, (3)
ref.

where the zero potential reference can be chosen arbitrarily.
Since y satisfies Laplace’s equation, the following boundary
integral equation can be obtained from Green’s identity:

y(r) =

r aG(r,r
20 = [ {otrn ™y 22,
r.r'el’. (4)

To determine the proper excitation condition for the induc-
tance calculation, we will assume that a current I flows in
the — z-direction along the center strip of the coplanar wave-
guide and a current I/2 flows in the + z-direction on each of
the ground conductors. We also will assume that no magnetic
flux penetrates the conductor strips for the quasi-TEM mode
and that 8y /9dn vanishes on the strips. Since the magnetic
flux lines encircle the center strip (in a clockwise fashion),
the magnetic scalar potential defined in (3) is a multivalued
function. We shall introduce a branch cut in the left gap, and
assign a fixed potential of I/4 just above the gap, and a
potential of —37/4 just below the gap, as shown in Fig. 3.
This ensures that the magnetic scalar potential jumps by 7
every time the cut is crossed in the clockwise direction. Next,
it can be argued that the value of ¢ in the right gap must be
—1/4 from symmetry considerations. This is true for a
coplanar waveguide with a nonmagnetic substrate, since the
magnetic field is symmetrical about the y = 0 plane. In
addition, as the magnetic flux lines are perpendicular to the
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Fig. 3. Boundary conditions for the inductance calculation of the coplanar

waveguide.
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Fig. 4. Convergence of the inductance of the coplanar waveguide vs.
number of node, where sI = s2 and w/d = 0.3.

gap, the magnetic scalar potential must be constant in the
gap.

Since the normal derivative of the Green’s function in-
cludes the scalar product # - (#' — r) (see (1)), the second
term of the integral equation (4) vanishes completely along
the planar boundary. In addition, since 3y /dn vanishes on
the conductor, the boundary integral equation (4) reduces to

[

gap

dar.

(%)

Note that the only unknown function in the above equation is
d¥//dn, or the normal component of the magnetic field, in
the gaps. Again the boundary element technique can be used
to numerically solve for dy//@n. Contrary to the capacitance
calculation, it is only necessary to assign nodes in the gap
region. Once the normal magnetic field in the gap is known,
the magnetic flux density passing through the gaps is given
by

B o 6
n = —_—, -
Moy, (6)
where i, is the permeability of the free space. Finally, the
inductance L is obtained from the ratio of the total magnetic

flux ¢ penetrating the gap and the magnitude of the current

= (7)

L=—H|.

4]

Fig. 4 shows the convergence of the inductance calculation.
As a check of the present formulation, we compare this result
against that calculated indirectly from the capacitance of the
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line. The latter is given by the formula

L- ﬁw], ®)

where C, is the capacitance of the coplanar waveguide with -

e, = 1 and v, is the wave velocity in the free space. In Fig.
4, these two values agree very well. The difference is less
than 0.1% for 154 nodes.

IV. CoNcLUSION

A simple method for analyzing the capacitance and the
inductance of the CPW are proposed and calculated by the
boundary element method. The method uses the boundary
integral equation of the electric and magnetic scalar poten-
tials, and should be quite advantageous in the quasi-static
characterization of CPW discontinuities. Furthermore, the
present formulation can be easily extended to treat conduc-
tors with finite thickness.
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